(3x+6)/(x^2-36)=6

Simple and best practice solution for (3x+6)/(x^2-36)=6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+6)/(x^2-36)=6 equation:



(3x+6)/(x^2-36)=6
We move all terms to the left:
(3x+6)/(x^2-36)-(6)=0
Domain of the equation: (x^2-36)!=0
We move all terms containing x to the left, all other terms to the right
x^2!=36
x^2!=36/
x^2!=√1/0
x!=1
x∈R
We multiply all the terms by the denominator
(3x+6)-6*(x^2-36)=0
We multiply parentheses
-6x^2+(3x+6)+216=0
We get rid of parentheses
-6x^2+3x+6+216=0
We add all the numbers together, and all the variables
-6x^2+3x+222=0
a = -6; b = 3; c = +222;
Δ = b2-4ac
Δ = 32-4·(-6)·222
Δ = 5337
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5337}=\sqrt{9*593}=\sqrt{9}*\sqrt{593}=3\sqrt{593}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{593}}{2*-6}=\frac{-3-3\sqrt{593}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{593}}{2*-6}=\frac{-3+3\sqrt{593}}{-12} $

See similar equations:

| 5(n-13)=2n-6 | | 0,9^60x=A^x | | (7+x)/7x=0 | | 6+x+(x-2)=180 | | 6A=2(a-10) | | 8.8x=35 | | 2(x-4)=154 | | 40x+4=1 | | 3x-29+76=180 | | 2(x²-4)=154 | | 3/2(x+6)=16+1/2-24 | | 1/m=8/24 | | 3/2(x+6)=16+1/2 | | 3x-8x+5=35 | | 9=(3c-3)/5 | | 7x=9x-28 | | 11(z+3)-4(z-1)=3(z-1)+3(z-2) | | 10+11x=98 | | 22n-11=2(12n-8) | | 3x+9=-11+7x | | 13=4(w+4)-7w | | -8x+-3(2x+1)=67 | | 3223=50c+23 | | 13=-4(1-x)+3(x+1) | | 5x+2+16x-3=72 | | 6z-126=180 | | −9(x+3)+4x=−2 | | 3y²-7y=8 | | 6z-126+84=180 | | 2^z=128 | | 8.3x-2.9=22 | | 18x-6-17x=-16 |

Equations solver categories